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Abstract

The interfacial area between wetting (W-) and non-wetting (NW-) phases is one of the crucial parameters in several flow and

transport processes in porous media. This paper gives predictions of such areas during imbibition (displacement of NW-phase by W)

in simple porous media. The total interfacial area includes contributions from thin films of W-phase around soil particles, from

trapped volumes of NW-phase, and from the meniscus between bulk NW- and W-phases. Imbibition was simulated with simple but

physically representative pore-scale calculations in a geometrically predetermined random sphere packing. This approach allows the

prediction of interfacial areas for different initial conditions (arising from different drainage endpoints, for example) and the in-

vestigation of the influence of phenomena such as ‘‘snap-off’’ of NW-phase due to coalescence of pendular rings. We find that the

trend of interfacial area as a function of saturation is not sensitive to these considerations. These predictions were compared to

different experimental data and were consistent with most of them. The predictions are also consistent with the conditions imposed

by thermodynamics.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The interface between wetting (W-) and non-wetting

(NW-) phases controls many transport process in po-
rous media, such as contaminant flow, adsorption or

dissolution. Thus, the knowledge of the area of such

interface is important for modeling these transport

phenomena.

There exist different methods and techniques which

give the estimates for interfacial areas. They include di-

rect measurements of the interfacial area between W-

and NW-phases [30], but this is rather difficult to employ.
Emerging technologies, such as magnetic resonance

imaging [17] and indirect methods, such as the interfacial

tracer technique [9,21,34,35] and a surfactant technique

[19] allow obtaining experimental data for interfacial

areas. A thermodynamic approach [3,23,30,31] estimates

areas from measurements of capillary pressure curves.

Different soil models (e.g. [15,20,25,32] give predictions

for such areas. Also the digitization of the pore space or

its images can be used in conjunction with models of fluid

configuration for calculations of interfacial area [1,7].
Results to date from these techniques exhibit con-

siderable variation in the trend of area versus saturation

and in the magnitude of the areas. To obtain an inde-

pendent assessment of these trends, we have undertaken

a theoretical investigation in a simple but physically

representative model porous medium. The model is a

random packing of spheres for which the coordinates of

the centers have been measured [10]. Knowledge of the
coordinates determines the grain space and the void

space in the packing, thereby overcoming a long-

standing difficulty for theoretical approaches. Mason

and Mellor [26] first used this model porous medium to

investigate imbibition, and the work presented here

follows their approach. Although a network represen-

tation of pore space is used for numerical calculations,

this approach differs from many network models in that
the features of the network are extracted directly from

the geometry of the model porous medium.
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Despite the simplicity of the model porous medium, it

is a powerful tool for investigation of the processes

which occur in porous media. In particular it allows a

priori predictions of macroscopic behavior (e.g. [4–6])

that have been validated by experimental data.
The purpose of this paper is to predict the interfacial

areas during imbibition process in the Finney packing,

which is physically representative of simple soils, and

investigate the influence of several effects, which may

take place during this process.

2. Pore-scale model of porous media

Different types of natural porous media almost al-

ways have very complicated pore space geometry, which
is very hard to model. Even for unconsolidated grains,

the pore space is irregular and cannot be described an-

alytically. A network or lattice of sites connected by

bonds qualitatively captures the essential features of the

pore space in a granular medium. Assigning quantitative

attributes such as coordination number, pore throat

sizes, pore body sizes, etc. to the network is not

straightforward, however. The usual approach for geo-
metric attributes is to sample a frequency distribution.

Mason [27] proposed a different approach, based upon

extracting a network model of pore space from a geo-

metrically predetermined random sphere packing.

In order to obtain such a network model, one must

define ‘‘sites’’ and ‘‘bonds’’ of the network. For this

purpose the Delaunay tessellation is used, which sub-

divides a set of points by grouping four nearest neigh-
bors together. Applied to the sphere centers of the

Finney pack, this procedure subdivides the volume of

the packing into tetrahedral cells (Fig. 1).

Thus, a simple network is built (Fig. 2): its ‘‘sites’’

(pore bodies) correspond to tetrahedral Delaunay cells

and its ‘‘bonds’’ (pore throats) correspond to the faces of

those cells. All geometrical features of these pore bodies

and throats (such as their volume, area etc.) follow di-
rectly from the known coordinates of the sphere centers.

The topology of the network arises naturally: since each

cell is a tetrahedron, it has four neighbors, resulting in a

lattice of connectivity four. In this work the central 3367

spheres of the Finney pack were used, which yield a

network with about 15,000 pores and 30,000 pore
throats. More detailed description of the Finney pack

and the network obtained from it by Delaunay tessel-

lation can be found elsewhere [10,26,27].

3. Model of imbibition

The configuration of two fluids in porous media is

governed by the Young–Laplace equation, which relates

capillary pressure to the curvature of the interface be-

tween two phases:

Pc ¼ rC ð1Þ

where Pc ¼ Pnw � Pw is the pressure difference between
W- and NW-phases; r is the interfacial tension between
them and C is the curvature of the interface. For sim-
plicity we assume also that the solid grain surfaces are

wetted perfectly, so the contact angle is zero. (The in-

fluence of the wettability on interfacial area during im-

bibition will be the subject of future investigations.) In

spite of the fact that Eq. (1) describes a static configu-

ration, it is commonly applied to the displacement of

one immiscible phase by another, when that displace-
ment occurs sufficiently slowly for capillary forces to

dominate.

In our simulations, the process of imbibition starts

from the end-point of primary drainage, where irre-

ducible W-phase saturation is obtained. It is assumed

for the simplicity of calculations that at this starting

point W-phase in porous medium exists only as pendular

rings (Fig. 3) around grain contacts. (In this work, a
grain contact is a pair of neighboring spheres, which

need not actually touch. W-phase supported within the

gap between two spheres is often called a liquid bridge;

for brevity we use the term ‘‘rings’’ to refer to liquid

bridges as well.) Pendular rings always exist when two

spheres actually touch. If a gap separates the two

Fig. 1. Tetrahedral cell within the Finney pack, resulting from

Delaunay tessellation. The apices of the tetrahedron are the centers of

four nearest neighbor spheres. Only the sections of the spheres con-

tained within the tetrahedron are shown.

Fig. 2. Schematic representation of a network model. The circles

correspond to tetrahedral cells, which are connected by bonds, which

correspond to cell faces. Each site has four neighbors.
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spheres, a pendular ring can exist only at curvatures
below a critical value that depends upon the gap be-

tween spheres. The geometry of such rings will be dis-

cussed below in more detail. Then, from this starting

point on, the curvature of the interface decreases, which

allows W-phase saturation to increase. (Experimentally,

a reduction in curvature is achieved by reducing the

capillary pressure, Eq. (1), and we use these terms in-

terchangeably.) W-phase is able to invade a pore body
only if the current curvature of the interface is less than

a certain critical curvature that depends upon the geo-

metry of that pore. The first attempt to define this crit-

ical curvature was made by Haines [14] as

Cin ¼ 2=Rin ð2Þ

where Rin is the radius of the sphere inscribed into the
pore body (such a sphere would touch each of four pore

grains). This so-called Haines insphere curvature would

allow negative hysteresis for some pores, that is, their

critical curvature for drainage would be less than the

critical curvature for imbibition [26]. In order to avoid

this non-physical effect, Mason and Mellor proposed to
use imbibition curvature instead:

Cimb ¼ Cin � 1:6=Rgrain ð3Þ

where Rgrain is grain radius. We adopt this as the defi-
nition of critical curvature for imbibition.

In order to simulate imbibition, it is also necessary to
define entrance and exit pores. The entrance pores are

assumed to be always connected with the W-phase res-

ervoir, and through them W-phase will invade the

packing. The exit pores are assumed to always be con-

nected with the NW-phase reservoir, and through them

displaced NW-phase will leave the packing. The pores

that are actual surface pores of the Finney pack are

natural choices for entrance and exit pores. However,

Mason and Mellor [26] have shown that the Finney pack

has a high ratio of surface pores to internal pores in

comparison with real samples. Consequently simula-
tions in which a large fraction of the surface pores are

taken as W-phase entrances do not give a sharp perco-

lation threshold (that is, sudden invasion of a large vol-

ume of the sample, once the curvature reaches a critical

value). In order to replicate the percolation behavior of

real samples, Mason and Mellor proposed to diminish

the number of entrance cells. Using this technique, they

obtained percolation threshold at the dimensionless (i.e.
for grain radius equal to 1) curvature about of 4.1,

which is close to the values observed during exper-

iments. In the calculations presented in this paper, the

number of entrance pores was 6 of the 1959 actual

surface pores, which gave the same threshold curvature

of about 4.1. As for exit pores, taking them to be actual

surface pores does not contradict physical consider-

ations. The influence of different choices for exit pores
(e.g. some fraction of the surface pores, a random se-

lection of pores from within the packing, etc.) on the

residual NW-phase saturation is interesting, but is be-

yond the scope of this paper.

The algorithm for imbibition is based on the imple-

mentation described in [26]; we have extended it to ac-

count for trapping of the NW-phase. The algorithm

proceeds by diminishing the current (global) dimen-
sionless curvature by a small value (in the simulations

performed in this paper the decrement in dimensionless

curvature was 0.1). A pore containing NW-phase is a

candidate for imbibition if it is the neighbor of one or

more already imbibed pores or if there is W-phase in any

throat of that pore. The latter condition only applies to

pairs of non-imbibed cells. It can arise as the result of

coalescence of pendular rings (this effect will be discussed
below). Each candidate for imbibition is checked to

determine whether it is contained in a cluster of pores

connected to an exit pore. The existence of such a cluster

implies a continuous path of pores containing NW-

phase from the candidate pore to the NW-phase reser-

voir. If this condition is not met, the pore is removed

from the list of candidates; the pore and other pores

containing NW-phase that are connected to it are added
to the list of pores containing entrapped NW-phase.

(Alternative entrapment strategies will be described be-

low.) Everything within a trapped cluster becomes fro-

zen, in the sense that all pendular rings and menisci

within the cluster will not change or move. This is be-

cause we assume incompressibility of NW-phase, so the

interface of trapped cluster cannot change with the de-

crease of capillary pressure. Once the trapped pores are
labeled, the remaining candidates are tested to see which

will be imbibed. If the current curvature is less than the

imbibition curvature of a candidate for imbibition, then

Fig. 3. Pendular ring around grain contact as a body of revolution

with two principal radii: liquid neck b and r.
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this pore will be imbibed. Newly imbibed cells are re-

moved from the list of candidates, and this list is re-

checked as described above. When no more cells can be

imbibed, it means that an equilibrium configuration has

been reached at the current curvature. At each value of
the current curvature, it is also necessary to check pore

throats for snap-off (coalescence of pendular rings) and

to calculate the areas and volumes of menisci and pen-

dular rings. This completes one iteration of the algo-

rithm, and the current curvature can be diminished

again. This algorithm works well for small decrements

of curvature, and several key features of the resulting

imbibition curve are in good agreement with experi-
ments [26].

4. Pendular rings and their coalescence

As pointed out above, it is assumed that at the

starting point of imbibition W-phase exists only in the

form of rings around grain contacts. Moreover, it is

assumed that these rings have toroidal form, that is, they

can be considered as a body of revolution with circular

cross-sections (Fig. 3).

On this figure a pendular ring is shown between two

equal spheres of radius R separated by a gap of 2h. This
ring has radii of curvature b and r in its two principal
directions. The curvature of the toroid is approximated

by C ¼ 1=r � 1=b. This simple approach was described
by Haines [13] and allows one to obtain formulas for all

necessary features of the ring (such as its volume and

surface area) as a function of the curvature from geo-

metrical calculations. Such formulas for h ¼ 0 can be
found, for example, in [12,28,33] and for h > 0 in [18].
The true form of the ring is not toroidal, but can be

found from the fact that its surface must have constant

curvature everywhere. The latter condition produces a

surface known as the nodoid. Obtaining the features of

such a body is not simple and demands numerical so-

lution of differential equations. For the case h ¼ 0 these
calculations were thoroughly made by Fisher [11], who

has found errors due to simplified toroidal approxima-
tion, and later by others such as Erle et al. [8] and Lian

et al. [24]. According to Fisher, at small values of W-

phase saturation (angle u (cf. Fig. 3)) is about 10–20�),
the error in liquid neck b is about 1–2% and in volume
3–5%. This range of values of u corresponds to rela-

tively high curvatures and, thus, to the beginning of

imbibition, when most of the W-phase is in this form.

These errors increase by a factor of four at high satu-
ration (angle u is about 40�, which corresponds to very
low curvature, and, thus, to the final stages of imbib-

ition, when there are almost no rings remaining in the

pore space). From this analysis we conclude that the

toroidal approach is sufficiently accurate when the con-

tribution to the W-phase saturation and interfacial area

from such rings is significant. Thus, this approximation

can be used in the imbibition calculations.

In a dense packing of equal spheres, the average

sphere has approximately eight contacts that will sup-

port pendular rings [2]. The presence of multiple rings
on a single sphere raises the possibility of coalescence as

the volume of the rings increases during imbibition. This

effect was thoroughly analyzed by Haines [14] and

is often called snap-off of NW-phase in pore throats,

because it leads to full closure of pore throats (bonds of

the network––faces of tetrahedral cells) with W-phase.

The stages of coalescence of pendular rings are shown in

Fig. 4.
Consider three spherical grains, which are in point

contact with each other. There will be three pendular

rings at the grain contacts. With decreasing curvature

(and, thus, increasing W-phase saturation) pendular

rings grow and at some point they will touch each other

(Fig. 4a). As pointed out above, each pendular ring has

two principal radii of curvature: one is convex (liquid

neck) and the other is concave. Now consider the
changes within the system as the W-phase saturation is

further increased. In the narrowest part of the pore

throat additional W-phase would necessarily occupy

more of the void space, thereby diminishing the diam-

eter of the pore throat occupied by NW-phase. Conse-

quently, the concave curvature of the interface would

increase. To maintain a surface of constant curvature

the convex curvature of rings would also has to increase.
This can only happen if the radius of the liquid neck

decreases, which is inconsistent with an increase in W-

phase saturation. This contradiction is resolved by filling

the pore throat with W-phase, causing snap-off of the

NW-phase. At this final stage of coalescence the pore

throat is full of W-phase, which is shown in Fig. 4b, and

the previously continuous volume of NW-phase now

exists in two distinct blobs (not shown).
Using the toroidal approximation of the ring geom-

etry described above, it is straightforward to obtain the

coalescence curvatures for each pore throat in the

packing, i.e. curvatures at which neighboring pendular

Fig. 4. (a) Initial stage of coalescence. Three pendular rings just touch

each other. (b) Final stage of coalescence. Pore throat is full of

W-phase.
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rings will coalesce. Not all throats in the model porous

medium are formed by three spheres in contact. The

mutual disposition of these three spheres is different for

each pore throat, which gives different coalescence cur-

vatures for different throats. The distribution of such
dimensionless coalescence curvatures in comparison

with imbibition curvatures (obtained from Eq. (3)) is

shown on Fig. 5.

Since coalescence of pendular rings leads to the clo-

sure of pore throats to NW-phase, it diminishes NW-

phase connectivity and so not only increases W-phase

saturation, but also increases the likelihood of entrap-

ment of NW-phase. This qualitative argument has led to
the conventional wisdom that these snap-offs are one of

the key features of the imbibition process and strongly

affect the value of residual NW-phase saturation. But

the calculations presented below show that the influence

of snap-off in a bead pack is almost negligible. This is

readily explained by the lesser values of coalescence

curvatures in comparison with imbibition curvatures, as

can be seen in Fig. 5. By the time the capillary pressure
(current curvature) has been reduced enough to initiate

coalescence, much of the packing has already been im-

bibed. (Recall that percolation occurs at a dimensionless

curvature of about 4.1.) These results will be explained

below in more detail.

Finally, we consider two extreme cases of W-phase

connectivity. In the first case W-phase is connected

throughout the whole packing, i.e. pendular rings
throughout the packing grow and change their shape

simultaneously with the decreasing of curvature. Physi-

cally, this case corresponds to imbibition over time

scales large enough for bulk volumes of W-phase to flow

from the W-phase entrance pores to the rings through

films on grains. In the second case W-phase is assumed

to be connected only in the immediate vicinity of the

meniscus between connected NW- and W-phases. This
means that only pendular rings that are neighbors of

imbibed pores can grow as curvature is decreased. This

corresponds to shorter time scales, over which film flow

across more than one grain is negligible. The difference

between these two extremes will be discussed below.

5. Entrapment of NW-phase

During imbibition, NW-phase can be trapped inside

the pore bodies, which results in the residual NW-phase

saturation at the end of the process (at zero curvature of

bulk W-phase). The value of this residual saturation is
itself very important and demands separate discussion.

NW-phase can be trapped in one pore body or in several

neighboring pore bodies (trapped cluster of pores) due to

the loss of connectivity with the exit pores, i.e. with the

pores assumed to be connected to the NW-phase reser-

voir. On Fig. 6 one possible way of entrapment of NW-

phase is represented. In this figure W-phase is shown by

grey color and NW-phase by black. In configuration I
the central and lower pores are not imbibed yet and

contain NW-phase. Suppose that the lower cell has an

Fig. 5. (a) Distribution of dimensionless coalescence curvatures. The peak at C ¼ 4:1 corresponds to coalescence in throats formed by three spheres
in contact. (b) Distribution of dimensionless imbibition curvatures in the Finney packing.

Fig. 6. One of the possible ways of entrapment of NW-phase. The

lower NW-phase containing pore has a higher critical imbibition

curvature than the middle NW-phase containing pore. Thus it imbibes

first, in this case with the meniscus advancing from the pore, con-

taining W-phase, at the bottom right. The meniscus cannot continue its

advance into the middle pore, because the critical imbibition curvature

for the middle pore is smaller. Thus the NW-phase in the middle pore

is trapped.
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exit pore as a neighbor, so NW-phase in configuration I

is connected to the NW-phase reservoir and thus is not

trapped. Suppose further that the lower pore has a

higher imbibition curvature than the central pore and is

connected to some other pore containing W-phase, in
this case the pore at the bottom right of the figure. Then

as the capillary pressure is reduced, the lower pore will

imbibe first, and at that moment the central pore loses

its connection to the NW-phase reservoir and becomes

trapped.

This simple explanation allows constructing several

computational strategies for entrapment.

The strategy of defining certain pores as the exits for
NW-phase was described above. The residual NW-

phase saturation obtained using this strategy will de-

pend upon the number and spatial distribution of the

exits. For example, taking the actual surface pores of the

packing as exits results in a residual NW-phase satura-

tion of about 20% of pore volume. Choosing the same

number of pores randomly distributed throughout the

whole packing results in a residual saturation of 10%.
This is because the average distance to an exit pore is

smaller in the latter case.

Experimental studies of the morphology of residual

NW-phase suggest that most trapped clusters of NW-

phase span only a few pores. This suggests that the av-

erage distance to an exit pore is rather small. Thus an

alternative strategy for simulating entrapment is to in-

voke a predetermined value of maximal possible cluster
size. That is, clusters of NW-phase larger than this

threshold are assumed to be connected to the NW-phase

reservoir and thus cannot be trapped, while smaller

clusters are assumed to be disconnected. As a surrogate

for the size of a cluster in space, we use the number of

pores in the cluster. The results of the implementation of

such a strategy depend on the maximal allowed cluster

size, although the frequency distribution of small clus-
ters (three pores or fewer) is remarkably similar for a

wide range of maximal sizes. While the physical basis for

this strategy is at best qualitative, it is computationally

much cheaper and is useful for comparison with other

strategies. It should be emphasized here that while the

choice of strategies significantly affects the residual NW-

phase configuration, it has very little effect on the cal-

culated areas and volumes. The detailed analysis of
NW-phase entrapment and structure of residual NW-

phase will be the subject of future publications.

6. Computation of meniscus areas and volumes

When an imbibed pore adjoins a non-imbibed pore,

W-phase occupies the face (pore throat) that connects

these pores and forms a meniscus within the non-

imbibed pore. This meniscus can intersect pendular

rings and other menisci as well, and the geometry of this

complex configuration is defined by the fact that its

surface must have constant curvature. However, exact

calculations of the area and volume of such a surface are

very complicated. We have implemented a greatly sim-

plified estimate instead. The meniscus is assumed to
have locally spherical form within the cell (Fig. 7).

When the meniscus enters a pore (as a result of im-

bibition of a neighboring pore or of coalescence in a

throat), it is assumed to immediately occupy a fixed

position and shape within the pore. Subsequent changes

in current curvature are ignored. The fixed position is

calculated as follows: the meniscus is assumed to occupy

the place between the three spheres, which define the
pore throat (face spheres with the centers A, B and C

(Fig. 7b)) and the sphere inscribed into the pore (with

the center O on Fig. 7) and having radius Rin (the same

Fig. 7. (a) A pore in the Finney pack, corresponding to a tetrahedral

cell determined by Delaunay tessellation. A, B, C and D––centers of

four nearest neighbor grains, which are the vertices of the cell. (b)

Simplified estimate of meniscus geometry. Upper sphere with center D

on (a) has been removed to reveal the inscribed sphere within the pore,

which touches all four grains. A, B and C––centers of grains (face

spheres). G and H––points of contact between the inscribed sphere and

corresponding grains. Vertices A, B and C define a pore throat. W-

phase has imbibed into the pore below the plane ABC, while the pore

above still contains NW-phase. The resulting meniscus is assumed to

occupy the space within the latter pore under the inscribed sphere. (c)

The sub-tetrahedron ABCO, corresponding to the face occupied by W-

phase, is used to define the upper extent of the meniscus. The inscribed

sphere, which is shown in (b), is removed. F: point of contact between

the inscribed sphere and the grain centered at C. O: center of the in-

scribed sphere. (d) To estimate the area of face sphere centered at C in

contact with the W-phase, we use the solid angle formed at vertex C by

edges CA, CB and CO. These edges connect C with the two other grain

centers (A and B) and the center of the inscribed sphere O (cf. c).

Points K, L and F are the points where the edges CA, CB and CO

intersect the grain surface. The surface of contact between the grain

and meniscus is that part of a grain surface subtended by the solid

angle (triangle KFL on the surface of the grain, shown in the picture

by a darker color). Pendular rings at grain contacts K and L are not

shown for clarity.
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as in Eq. (2)). The W-phase volume is bounded by the

face ABC of tetrahedral cell from below, by part of the

inscribed sphere from above and by the face spheres

from each side (Fig. 7b). The extent of the meniscus into

the pore is taken to be the plane containing the points of
contact (G, H and F in Fig. 7b and c) between the in-

scribed sphere and the face spheres. The main error in-

troduced by this approach is neglecting the growth and

advance of the meniscus inside the pore as the curvature

decreases. On the other hand, this approximation elim-

inates the difficult problem of computing the intersec-

tion of menisci inside a pore. This is because the

approximation restricts the meniscus location into non-
overlapping subdivisions of the pore. That is, the pore is

subdivided into four sub-tetrahedra (Fig. 7c) corre-

sponding to the cell faces, with the vertices in the face

sphere centers and the center of the inscribed sphere

(sub-tetrahedron ABCO on Fig. 7). When the meniscus

advances into the pore from the face, it is restricted by

faces of the sub-tetrahedron and so cannot intersect

other menisci. In the extreme case of four menisci inside
a single pore, the NW-phase will occupy the inscribed

sphere within the pore. The intersection between men-

iscus and pendular rings cannot be avoided even in this

simplified approximation, which therefore overestimates

the area of contact between W-phase and grain surfaces.

The local error due to such intersections is large only at

small curvatures (at the end of imbibition) when the

number of such intersections is small, and thus its effect
on the computed total interfacial area is relatively

minor.

The calculations of meniscus volume and surface area

are straightforward. The volume can be found in the

same fashion as a pore body volume, that is, as a volume

of the appropriate sub-tetrahedron (ABCO on Fig. 7),

minus volumes of face spheres and the inscribed sphere,

which are contained within this tetrahedron. The surface
area of the meniscus can be found as an area of that part

of inscribed sphere surface below the plane of contact

with the face spheres (plane GHF in Fig. 7c). The area

of contact between the meniscus and face spheres can be

found using appropriate solid angles. For example, the

solid angle at vertex C formed by segments CA, CB and

CO subtends a spherical triangle KFL on the surface of

grain C, and this is taken to be the surface in contact
with W-phase. Similar constructions are applied at

vertices A and B. For a coalescent face (pore throat)

between two non-imbibed pores, the pore throat itself

will contain W-phase, and two menisci will be formed,

one within each pore. They can be treated exactly the

same way as described above. The difference is only in

the nature of their origin.

This simplified approach of meniscus calculations
introduces errors, but they are significant mainly at the

beginning of imbibition. Because the meniscus is as-

sumed to reach its maximal extent into the pore imme-

diately, the approach clearly overestimates W-phase

volume in the early stages of imbibition. The maximal

error could be of order of 100% for some pores. The

error is much less at later stages of imbibition, when the

meniscus will have advanced much farther into the non-
imbibed pores. These errors are primarily in the volume

calculation; the area estimates are less sensitive to the

meniscus location. Moreover, such errors do not change

qualitative trends, influencing only on small details of

obtained curves. The assumptions that lead to these

errors are: locally spherical form of the meniscus within

the pore, instant equilibrium of the meniscus and some

numerical errors due to the simplified computation of
the grain surface in contact with the meniscus.

7. Results

Simulations of the imbibition process in the Finney

packing were conducted with the algorithms described

above. We implemented several variations of connec-

tivity assumptions and trapping criteria in order to

study their effects on the process. In presenting the re-

sults we distinguish two contributions to interfacial area.

One is the interface between bulk configurations of W-

and NW-phase, i.e. menisci and pendular rings; the
other is the interface between grain surfaces and NW-

phase. The solid–NW-phase interface can be regarded as

W–NW interface due to the presence of thin films

around perfectly wetted solid particles. The role of such

films in different transfer processes (and, thus, their be-

havior as a real interface) depends upon features such as

their thickness (which determines whether contaminant

particles could travel through them) and upon the time-
scale of the processes. Clearly, the larger the time-scale,

the more such films will contribute to transfer. The total

interfacial area should therefore be considered as max-

imal possible interfacial area of the system.

The Figs. 8–11 depict total W–NW-phase interfacial

area (curve III), which is the sum of the W–NW-phase

interface (curve I) (corresponds to the bulk configura-

tions, i.e. pendular rings and menisci) and the solid–
NW-phase interface (curve II). Figs. 8 and 9 illustrate

the effect of coalescence, and Figs. 10 and 11 show the

effect of W-phase connectivity. There were six entrance

cells for the simulations in Figs. 8 and 9 and 392 for

Figs. 10 and 11. (A small number of entrance cells

provide a ratio of surface to internal pores comparable

to that found in natural samples [26], and consequently

yields a sharp percolation threshold. Increasing the
number of entrances broadens the percolation threshold

but does not significantly affect the interfacial area.) As

shown in Fig. 8, the total interfacial area decreases as

W-phase saturation increases. At the beginning of im-

bibition, the W-phase saturation is about 3% of pore

volume, and the dominant contribution to area is the
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film on the grains. Despite their small volume, pendular

rings cover almost 30% of the grain surface. The surface

of the rings provides an area of the W–NW-phase in-

terface. At the end of imbibition, the W-phase satura-
tion is 80–90% of pore volume (this range of values was

obtained from series of simulations, not presented here,

using different entrapment strategies and W-phase con-

nectivity) and the total area is 20–30% of the grain area.

The dominant contribution is the area of residual NW-

phase, which exists in the form of trapped blobs. The

area of rings grows steadily at the beginning of imbib-
ition because all W-phase is assumed connected; once

the meniscus begins to advance into the pore space, the

area of rings and menisci remains nearly constant. In

contrast, the contribution of films diminishes steadily

during the process as the number of pores containing

Fig. 9. Components of bulk W–NW-phase interfacial area (curve I on

Fig. 8) during imbibition process, normalized by total grain surface

area. Effect of coalescence. IV––area of pendular rings; V––area of

menisci.

Fig. 10. Interfacial area and its components during imbibition process,

normalized by total grain surface area. Effect of W-phase connectivity.

I––area of bulk W–NW-phase interface, which is the sum of pendular

rings and meniscus areas (curves IV and V on Fig. 11 correspondingly);

II––area of solid–NW-phase interface (thin films of W-phase around

solid particles); III––total interfacial area (sum of I and II compo-

nents).

Fig. 11. Components of bulk W–NW-phase interfacial area (curve I

on Fig. 8) during imbibition process, normalized by total grain surface

area. Effect of W-phase connectivity. IV––area of pendular rings; V––

area of menisci.

Fig. 8. Interfacial area and its components during imbibition process,

normalized by total grain surface area. Effect of coalescence. I––area of

bulk W–NW-phase interface, which is the sum of pendular rings and

meniscus areas (curves IV and V in this figure correspondingly); II––

area of solid–NW-phase interface (thin films of W-phase around solid

particles); III––total W–NW interfacial area (sum of I and II compo-

nents).
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NW-phase decreases, with the exception of a slight in-

crease at the end. This increase is very small in com-

parison with the values of other areas and is the result of

our neglect of the mutual penetration of menisci and

pendular rings.
Two components of this area are shown in Fig. 9:

surface area of pendular rings (curve IV) and W-phase

menisci (curve V). These components are not equal to

zero at the end of the process, because both pendular

rings and menisci become part of trapped clusters with

NW-phase, and this area should be associated with the

area of W–NW interface of such clusters with residual

NW-phase. Of course, such subdivision could be done
only at the first stages of imbibition, when rings and

menisci exist independently of one another. At the end

of the process W-phase forms one continuous body,

where such rings and menisci coalesce and penetrate one

into another.

On the Figs. 8 and 9, the influence of coalescence of

pendular rings is presented. It was assumed in the lit-

erature before, that this effect of coalescence, or snap-off
of pore throats, should be the defining feature of im-

bibition process and affect residual NW-phase satura-

tion [16,22,29]. Our simulations indicate that in a bead

pack, the influence of snap-off is almost negligible; af-

fecting neither the qualitative behavior of the curves nor

the residual NW-phase saturation (the difference is

about 2–3%). This can be explained by the fact, that

most pore throats will snap-off at dimensionless curva-
tures less than 4 (cf. Fig. 5), at which point almost all of

the pores are already candidates for imbibition, and a

significant fraction of the residual NW-phase has al-

ready been trapped. As a result, snap-off rarely creates

new candidates for imbibition and so does not influence

that process noticeably. Moreover, much of the reduc-

tion in local NW-phase connectivity accompanying

snap-off occurs in volumes of NW-phase that would
have been trapped anyway, so that snap-off affects re-

sidual NW-phase saturation only slightly.

The purpose of the calculations presented in Figs. 10

and 11 was to examine the influence of connectivity of

W-phase on the total area and its components. Two

extreme cases were considered. The solid curves are the

results when the W-phase is assumed to be connected

throughout the whole packing, so that all pendular rings
grow simultaneously everywhere in the packing with

each decrement in curvature. Under this assumption the

endpoint of drainage (from which our imbibition sim-

ulations commence) should be zero W-phase saturation.

The initial condition of 3% W-phase saturation in the

simulations corresponds to W-phase held as pendular

rings at grain contacts but no other W-phase present in

the model porous medium (all pores are drained). Thus
if connected to the W-phase source the pendular rings

would shrink in response to an increase in capillary

pressure, then reversibly expand when capillary pressure

was reduced during imbibition. The curves in Figs. 10

and 11 do not show this reversible path between the

origin (zero interfacial area at zero W-phase saturation)

and the initial condition for imbibition.

The broken lines on Figs. 10 and 11 correspond to the
assumption that a pendular ring adjusts its form in

correspondence with the current curvature only if W-

phase has advanced into one of the pores which contain

this ring. To better illustrate the influence of these as-

sumptions, the percolation threshold was softened by

increasing the number of pores connected with the W-

phase reservoir to 392; recall that in Figs. 8 and 9 there

were only six such pores. The results on Figs. 10 and 11
show that the difference between these two extremes

occurs only in the beginning of the process and repre-

sents the growth of rings in the first case before the

penetration of W-phase inside the pack. At the end of

imbibition the curves coincide. This means that there are

no isolated pendular rings, i.e. rings that become trap-

ped, when their form has not yet changed in accordance

with current curvature of W-phase. This absence of
isolated pendular rings is not trivial, but is confirmed by

the analysis of pore-space during simulations. Other

effects, such as choice of different entrapment strategies

or diminishing the number of surface cells connected

with W-phase reservoir, in order to obtain ratio of

surface/internal cells close to real samples and achieve a

sharp percolation threshold, also influence the process

only slightly and do not change the qualitative picture
of it.

These predictions for the interfacial area during im-

bibition are compared with experimental data from

several sources in Fig. 12. The predictions were made

with the following conditions: initial dimensionless

curvature equals 10; pendular rings are connected with

W-phase throughout the whole packing and their co-

alescence is allowed; number of cells, connected with W-
phase reservoir is 6 (sharp percolation threshold); actual

surface cells were taken as exits in order to define

trapping criterion for NW-phase. It is also useful to

estimate an upper bound for the area of solid in contact

with the NW-phase. One bound comes from assuming

that a non-imbibed pore contains no W-phase whatso-

ever, so that the entire grain surface within that pore is

in contact with NW-phase.
In 1970 Morrow [30] measured area of residual NW-

phase in random packing of 3-mm beads, using visual

investigation of 2D-cross-sections after the phase con-

figurations were ‘‘frozen’’ by in situ polymerization re-

actions. His value was 13.2% of total solid area.

Unfortunately, he did not report his residual NW-phase

saturation, so this result is plotted in the Fig. 12 as a line

of constant value 0.132 of total solid area in the range of
residual NW-phase saturations 0.1–0.2 of pore volume.

Johns and Gladden [17] explored dissolution of octanol

ganglia in random packings of glass ballotini and
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measured residualNW-phase area bymagnetic resonance

imaging (MRI). They reported values of ‘‘specific’’ area,

which corresponds to our total interfacial area (includes
solid–NW interface), and ‘‘effective’’ area, which corre-

sponds to the bulk W–NW-phase interface. For the

former, they obtained values in the range from 0.3 to 0.7

expressed as a fraction of total solid surface; their re-

sidual NW-phase saturation ranged from 7% to 17%.

For the latter, they reported values of about 0.15 for the

same range of residual NW-phase saturation. These di-

rect measurements of Morrow and values of effective
area, obtained by Johns and Gladden, agree well with

the predictions, given in this paper. As for the values of

specific area, they represent the total interfacial area

including solid–NW-phase area, so the difference be-

tween specific and effective areas is exactly the area of

this solid–NW-phase interface. In some cases the values

of these differences are about twice as large as maximal

possible solid–NW-phase area for the Finney packing.
The reason for this discrepancy remains puzzling, es-

pecially in light of the otherwise good agreement with

predictions.

In 1996 Karkare and Fort [19] proposed a measuring

technique based on the adsorption of insoluble surfac-

tant. They measured air–water interfacial area as a

function of W-phase saturation for both glass bead

packings and sand columns, but they used preliminary
interfusion of the sample with water–surfactant mixture,

so their process was not equivalent to imbibition. As

shown in Fig. 12, they obtained the same decreasing

trend in the interfacial area, from about 0.8 of total solid

surface area at low W-phase saturation to 0.1 at high

saturations. Comparison with our predictions suggests

that the solid–NW-phase area (thin films) is included in

their measurements.

Bradford and Leij [3] computed interfacial area from

imbibition data (capillary pressure vs. W-phase satura-

tion) in an oil–air–sand system (oil wetted sand particles
completely), based upon a thermodynamic approach

[23,30]. For consistency with other data in the Fig. 12

the Bradford and Leij measurements have been nor-

malized by the surface area of the mixture of sands used

in their experiments, reported by them as 650 cm�1.

They also obtained a monotonic decrease in area. Their

areas are smaller than our predictions, especially at the

beginning of the process. This could be explained by the
fact that they used mixtures of sands with a wide dis-

tribution of particle sizes, so that their irreducible W-

phase saturation was larger than the value for our

monodisperse packing. The interfacial area would be

correspondingly smaller. Their residual NW-phase sat-

uration was about 20% of pore volume.

This theoretical approach of Bradford and Leij

(which was proposed for the first time by Leverett [23])
implies a linear relationship between the interfacial area

and the area under the imbibition curve. Imbibition

curves, obtained for different conditions in the Finney

packing, are presented in Fig. 13. Imbibition corre-

sponds to increase of W-phase saturation, so the free

energy of the system must decrease during imbibition.

At the same time the total surface energy must also

decrease, implying that the total interfacial area must
decrease. The loss of free energy corresponds to the

work done in advancing the meniscus into the pore

space and corresponds to the area under the imbibition

curve. Our imbibition simulations permit independent

calculations of this work and of the change in surface

energy, and these are plotted against each other in Fig.

14. In Figs. 13 and 14 all values are dimensionless, i.e.

for sphere radii equal to 1. Initial dimensionless curva-

Fig. 12. Interfacial area and its components during imbibition process, normalized by of total grain surface area (coalescence is allowed, W-phase is

connected throughout the whole packing, number of cells, connected with W-phase reservoir, is 6). Comparison with the experimental data.
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ture is equal to 10 in the calculations in Fig. 13 and to 50

for curves in Fig. 14. It is remarkable that the curve,

obtained for assumptions with 6 surface cells and con-

nectivity of W-phase, lies very close to the theoretical
line, with the maximal discrepancy of about 7% at the

end. Thermodynamic analysis assumes reversibility of

the process, and thus the area under the imbibition

curve represents the reduction in free energy during a

reversible process. Imbibition, though, is not reversible

(except for the case of pendular ring growth): there are

losses of free energy (and, thus, of interfacial area)

which occur during irreversible displacements (‘‘rheons’’
of Morrow [30]). Thermodynamic analysis does not take

into account such displacements, and thus the path of a

real process in Fig. 14 will have slope everywhere less

than or equal to unity. All our simulations are consistent

with this requirement.

Morrow [30] measured efficiency of imbibition as a

ratio of work done by the system (which is equal to the

area under the imbibition curve) to losses of free energy

of the system due to destruction of interfaces (which can
be determined from direct observation of interfacial

areas). Obviously, losses of energy due to the irrevers-

ibility of the process can be found then as unity minus

such defined efficiency. The comparison of such losses of

energy as measured by Morrow to those computed from

the presented simulations is shown in Table 1. As shown

in this table, the magnitude of free energy loss due to

irreversibility computed in our simulations compares
well with Morrow�s measurement. The assumption of
W-phase being connected throughout the packing (i.e.

pendular rings grow as curvature decreases) appears to

approximate well the conditions of Morrow�s exper-
iment. The assumptions of poor W-phase connectivity

Fig. 14. Dependence between loss of the dimensionless free energy of the system and loss of its dimensionless interfacial area per unit pore volume

during imbibition.

Fig. 13. Imbibition curves (dependence between dimensionless curvature and W-phase saturation) in the Finney packing.
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and the absence of coalescence produce larger values of

the losses of energy due to the reversibility of the pro-

cess, and so do not agree with the conditions of Mor-

row�s experiment.
The thermodynamic consistency of the simulations

presented in Fig. 14 and Table 1 is not trivial, because

the relationship between area and volume differs sig-

nificantly for different morphologies of phase configu-
ration. For example, pendular rings have a surface to

volume ratio of nearly 20, while the ratio for menisci is

less than five, and the surface area of grains in contact

with NW-phase has no direct relationship to saturation.

(In contrast, consider a simulation that approximated

phase saturation by the number fraction of pores oc-

cupied by that phase, and similarly approximated the

interfacial area as a linear function of phase saturation.
Such a simulation would trivially satisfy the thermody-

namic relationship between imbibition curve and inter-

facial area.) From the above one can conclude that the

phase configurations computed in the imbibition simu-

lation are physically reasonable, and that the approxi-

mations in computations of the geometry of these

configurations do not introduce substantial errors.

Schaefer et al. [35] and also Saripalli et al. [34] used
similar interfacial tracer techniques and measured the

interfacial area for imbibition in 0.335 mm silica sand

[35] and different sands and glass beads packs [34]. They

obtained results quite different from what was described

above, Fig. 12. Schaefer et al. reported interfacial areas

for some of their experiments (are not shown on Fig. 12)

that were almost twice as large as total solid area at the

beginning of imbibition. The reported area decreased
more rapidly than our predicted trend, but the relative

constancy for W-phase saturations between 0.13 and 0.4

is similar to the predicted W–NW area. They also re-

ported an increase of area values toward the end of the

imbibition process (W-phase saturations greater than

about 0.5). An increase in total area would violate

thermodynamics [23,30] though an increase in the bulk

W–NW interface is conceivable if it were accompanied
by a larger decrease in solid–NW area. Saripalli et al.

measured the area of residual NW-phase, obtaining

values from 1.2 to almost 8 times as much as total grain

area for W-phase saturation of 80–0% of pore volume.

Other researchers have reported similar results using this

technique. Many measurements reported for drainage

are also much higher than predicted [6]. The reasons for

this are the subject of continuing investigation.

Overall, the predictions given in this paper provide

reasonable values for interfacial areas and correctly

describe the qualitative behavior of the system, which is

verified by series of different experimental data, which

were obtained with various techniques. It is interesting

to compare these results with the predictions of Berko-

witz and Hansen [1] in a geometrical model extracted

from images of the pore space in a sample of Fon-
tainebleau sandstone. They used a simulated annealing

technique to find the minimum interfacial energy dis-

tributions at different saturations. Their calculated wa-

ter–air and solid–air areas qualitatively match our bulk

W–NW and solid–NW predictions. Moreover, their

values for water–air area are in the range of 10–20% of

total solid area, which agrees very well with calculations

given in this paper.
It is remarkable also, that the assumptions regarding

coalescence, W-phase connectivity and trapping criteria

give only secondary corrections to the area values and

do not change the general trend of the curves. If the

contribution of thin films (solid–NW area) is included,

the interfacial area curves decrease with W-phase satu-

ration. If not, the interfacial area remains nearly con-

stant during imbibition, because the decreasing number
of pendular rings (and thus, their surface area) is

roughly balanced by the increasing number of throats

containing the meniscus. Thermodynamic consider-

ations show that the monotonic decrease in total inter-

facial area is a necessary consequence of an imbibition

curve that exhibits a monotonic relationship between

capillary pressure and saturation. The two contributions

to the total interfacial area need not be monotonic,
however. The prediction of a roughly constant area

between the two fluid phases indicates a remarkable

degree of balancing across a wide range of saturations.

8. Conclusions

Using simple calculations on a geometrically prede-

termined random sphere packing, quantitative predic-

tions of the interfacial area between W- and NW-phase
during imbibition process were made. Two important

phenomena, connectivity of W- and NW-phase trap-

ping, were treated by considering physically reasonable

limiting cases. Remarkably, these phenomena affected

the interfacial area curves only slightly. In particular,

coalescence of pendular rings, or snap-offs, did not in-

Table 1

Losses of energy due to irreversibility of imbibition

Imbibition conditions Losses of energy due to irreversibility

Morrow�s experiment 7.5%

6 surface cells, W-phase is connected throughout the whole packing, coalescence is allowed 6.2%

392 surface cells, loss of W-phase connectivity, coalescence is not allowed 14.8%

6 surface cells, loss of W-phase connectivity, coalescence is not allowed 20.1%
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fluence areas and only slightly affected residual satura-

tions. This is because in this unconsolidated packing, the

curvatures at which coalescence occurs are much lower

than the curvatures at which most of the pore space is

imbibed.
Though there are some errors due to simplifications

in calculations (for instance, in meniscus areas and

volumes), the predictions of the interfacial area are in a

good agreement with different experiments. Data from

[17,30] give quantitative results for the interfacial area of

trapped ‘‘blobs’’ of residual NW-phase at the end of the

process of imbibition, and these quantitative results

confirm numerical predictions given in this paper. Also
experiments from [19] and simulation from [1] together

with theoretical approach of [3,23,30] verify the quali-

tative behavior of interfacial area during imbibition. The

predictions are not consistent with other results, such as

[32,34,35], but these results also exceed the total grain

surface area considerably at some points and are

sometimes non-monotonic. We have not been able to

construct a plausible reconciliation of our model with
these observations. It seems likely that other phenomena

we have not considered in our model are influencing

these measurements.

The predicted residual NW-phase saturations are also

in good agreement with all experiments (about 15–20%

of pore volume).

Overall, the analysis of Finney packing gives simple,

but powerful tool for predictions of behavior of porous
media during imbibition process. These predictions

could be improved, for example, by providing more

accurate values of imbibition curvatures of cells or more

precise calculations of volumes and areas, which gives

the directions for future work.
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